Java 基础

参考

一、数据类型

基本类型

boolean 只有两个值:true、false,可以使用 1 bit 来存储,但是具体大小没有明确规定。JVM 会在编译时期将 boolean 类型的数据转换为 int,使用 1 来表示 true,0 表示 false。JVM 支持 boolean 数组,但是是通过读写 byte 数组来实现的。

注意:Java 里使用 long 类型的数据一定要在数值后面加上 L,否则将作为整型解析。

包装类型

基本类型都有对应的包装类型,基本类型与其对应的包装类型之间的赋值使用自动装箱与拆箱完成。

Integer x = 2;     // 装箱 调用了 Integer.valueOf(2)
int y = x;         // 拆箱 调用了 X.intValue()

缓存池

int a = new Integer(123)int a = Integer.valueOf(123) 的区别在于:

  • new Integer(123) 每次都会新建一个对象;

  • Integer.valueOf(123) 会使用缓存池中的对象,多次调用会取得同一个对象的引用。

// 新建对象
Integer x = new Integer(123);
Integer y = new Integer(123);
System.out.println(x == y);    // false
// 使用缓存池中的对象
Integer z = Integer.valueOf(123);
Integer k = Integer.valueOf(123);
System.out.println(z == k);   // true

valueOf() 方法的实现比较简单,就是先判断值是否在缓存池中,如果在的话就直接返回缓存池的内容。

public static Integer valueOf(int i) {
    if (i >= IntegerCache.low && i <= IntegerCache.high)
        return IntegerCache.cache[i + (-IntegerCache.low)];
    return new Integer(i);
}

在 Java 8 中,Integer 缓存池的大小默认为 -128~127。

static final int low = -128;
static final int high;
static final Integer cache[];

static {
    // high value may be configured by property
    int h = 127;
    String integerCacheHighPropValue =
        sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
    if (integerCacheHighPropValue != null) {
        try {
            int i = parseInt(integerCacheHighPropValue);
            i = Math.max(i, 127);
            // Maximum array size is Integer.MAX_VALUE
            h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
        } catch( NumberFormatException nfe) {
            // If the property cannot be parsed into an int, ignore it.
        }
    }
    high = h;

    cache = new Integer[(high - low) + 1];
    int j = low;
    for(int k = 0; k < cache.length; k++)
        cache[k] = new Integer(j++);

    // range [-128, 127] must be interned (JLS7 5.1.7)
    assert IntegerCache.high >= 127;
}

编译器会在自动装箱过程调用 valueOf() 方法,因此多个值相同且值在缓存池范围内的 Integer 实例使用自动装箱来创建,那么就会引用相同的对象。

Integer m = 123; // 相当于 Integer m = Integer.valueOf(123); 自动装箱
Integer n = 123; // 相当于 Integer n = Integer.valueOf(123); 自动装箱
System.out.println(m == n); // true 所以会引用相同的对象

基本类型对应的缓冲池如下:

  • boolean values true and false

  • all byte values

  • short values between -128 and 127

  • int values between -128 and 127

  • char in the range \u0000 to \u007F

在使用这些基本类型对应的包装类型时,如果该数值范围在缓冲池范围内,就可以直接使用缓冲池中的对象。

在 jdk 1.8 所有的数值类缓冲池中,Integer 的缓冲池 IntegerCache 很特殊,这个缓冲池的下界是 - 128,上界默认是 127,但是这个上界是可调的,在启动 jvm 的时候,通过 -XX:AutoBoxCacheMax=<size> 来指定这个缓冲池的大小,该选项在 JVM 初始化的时候会设定一个名为 java.lang.IntegerCache.high 系统属性,然后 IntegerCache 初始化的时候就会读取该系统属性来决定上界。

StackOverflow : Differences between new Integer(123), Integer.valueOf(123) and just 123

Java 基本类型的包装类的大部分都实现了缓存池技术,即 Byte,Short,Integer,Long,Character,Boolean;前面 4 种包装类默认创建了数值[-128,127] 的相应类型的缓存数据,Character 创建了数值在[0,127]范围的缓存数据,Boolean 直接返回 True Or False。如果超出对应范围仍然会去创建新的对象。 为啥把缓存设置为[-128,127]区间?(参见 issue/461)性能和资源之间的权衡。

另外,两种浮点数类型的包装类 Float,Double 并没有实现缓存池技术。

二、String

概览

String 被声明为 final,因此它不可被继承。(Integer 等包装类也不能被继承)

在 Java 8 中,String 内部使用 char 数组存储数据。

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
    /** The value is used for character storage. */
    private final char value[];
}

在 Java 9 之后,String 类的实现改用 byte 数组存储字符串,同时使用 coder 来标识使用了哪种编码。

public final class String
    implements java.io.Serializable, Comparable<String>, CharSequence {
    /** The value is used for character storage. */
    private final byte[] value;

    /** The identifier of the encoding used to encode the bytes in {@code value}. */
    private final byte coder;
}

value 数组被声明为 final,这意味着 value 数组初始化之后就不能再引用其它数组。并且 String 内部没有改变 value 数组的方法,因此可以保证 String 不可变。

不可变的好处

好处:可以缓存 hash 值、字符串常量池的需要、安全性、线程安全。

为什么说 String 不可变?

1. 可以缓存 hash 值

因为 String 的 hash 值经常被使用,例如 String 用做 HashMap 的 key。不可变的特性可以使得 hash 值也不可变,因此只需要进行一次计算。

2. String Pool 的需要

字符串常量池

如果一个 String 对象已经被创建过了,那么就会从 String Pool 中取得引用。只有 String 是不可变的,才可能使用 String Pool。

3. 安全性

String 经常作为参数,String 不可变性可以保证参数不可变。例如在作为网络连接参数的情况下如果 String 是可变的,那么在网络连接过程中,String 被改变,改变 String 的那一方以为现在连接的是其它主机,而实际情况却不一定是。

4. 线程安全

String 不可变性天生具备线程安全,可以在多个线程中安全地使用。

Program Creek : Why String is immutable in Java?

String, StringBuffer and StringBuilder

1. 可变性

  • String 不可变

  • StringBuffer 和 StringBuilder 可变

2. 线程安全

  • String 不可变,因此是线程安全的

  • StringBuilder 不是线程安全的

  • StringBuffer 是线程安全的,内部使用 synchronized 进行同步

StackOverflow : String, StringBuffer, and StringBuilder

String Pool

字符串常量池(String Pool)保存着所有字符串字面量(Literal Strings),这些字面量在编译时期就确定。不仅如此,还可以使用 String 的 intern() 方法在运行过程将字符串添加到 String Pool 中。

当一个字符串调用 intern() 方法时,如果 String Pool 中已经存在一个字符串和该字符串值相等(使用 equals() 方法进行确定),那么就会返回 String Pool 中字符串的引用;否则,就会在 String Pool 中添加一个新的字符串,并返回这个新字符串的引用。

下面示例中,s1 和 s2 采用 new String() 的方式新建了两个不同字符串,而 s3 和 s4 是通过 s1.intern() 方法取得同一个字符串引用。intern() 首先把 s1 引用的字符串放到 String Pool 中,然后返回这个字符串引用。因此 s3 和 s4 引用的是同一个字符串。

String s1 = new String("aaa");
String s2 = new String("aaa");
System.out.println(s1 == s2);           // false
String s3 = s1.intern();
String s4 = s1.intern();
System.out.println(s3 == s4);           // true

如果是采用 "bbb" 这种字面量的形式创建字符串,会自动地将字符串放入 String Pool 中。

String s5 = "bbb";
String s6 = "bbb";
System.out.println(s5 == s6);  // true

在 Java 7 之前,String Pool 被放在运行时常量池中,它属于永久代。而在 Java 7,String Pool 被移到堆中。这是因为永久代的空间有限,在大量使用字符串的场景下会导致 OutOfMemoryError (内存溢出)。

使用这种方式一共会创建两个字符串对象(前提是 String Pool 中还没有 "abc" 字符串对象)。

  • "abc" 属于字符串字面量,因此编译时期会在 String Pool 中创建一个字符串对象,指向这个 "abc" 字符串字面量。

  • 而使用 new 的方式会在堆中创建一个字符串对象。

创建一个测试类,其 main 方法中使用这种方式来创建字符串对象。

public class NewStringTest {
    public static void main(String[] args) {
        String s = new String("abc");
    }
}

使用 javap -verbose 进行反编译,得到以下内容:

// ...
Constant pool:
// ...
   #2 = Class              #18            // java/lang/String
   #3 = String             #19            // abc
// ...
  #18 = Utf8               java/lang/String
  #19 = Utf8               abc
// ...

  public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
      stack=3, locals=2, args_size=1
         0: new           #2                  // class java/lang/String
         3: dup
         4: ldc           #3                  // String abc
         6: invokespecial #4                  // Method java/lang/String."<init>":(Ljava/lang/String;)V
         9: astore_1
// ...

在 Constant Pool 中,#19 存储这字符串字面量 "abc",#3 是 String Pool 的字符串对象,它指向 #19 这个字符串字面量。在 main 方法中,0: 行使用 new #2 在堆中创建一个字符串对象,并且使用 ldc #3 将 String Pool 中的字符串对象作为 String 构造函数的参数。

以下是 String 构造函数的源码,可以看到,在将一个字符串对象作为另一个字符串对象的构造函数参数时,并不会完全复制 value 数组内容,而是都会指向同一个 value 数组。

public String(String original) {
    this.value = original.value;
    this.hash = original.hash;
}

三、运算

参数传递

Java 的参数是以值传递的形式传入方法中,而不是引用传递。

以下代码中 Dog dogdog 是一个指针,存储的是对象的地址。在将一个参数传入一个方法时,本质上是将对象的地址以值的方式传递到形参中。

public class Dog {

    String name;

    Dog(String name) {
        this.name = name;
    }

    String getName() {
        return this.name;
    }

    void setName(String name) {
        this.name = name;
    }

    String getObjectAddress() {
        return super.toString();
    }
}

在方法中改变对象的字段值会改变原对象该字段值,因为引用的是同一个对象。

class PassByValueExample {
    public static void main(String[] args) {
        Dog dog = new Dog("A");
        func(dog);
        System.out.println(dog.getName());          // B
    }

    private static void func(Dog dog) {
        dog.setName("B");
    }
}

但是在方法中将指针引用了其它对象,那么此时方法里和方法外的两个指针指向了不同的对象,在一个指针改变其所指向对象的内容对另一个指针所指向的对象没有影响。

public class PassByValueExample {
    public static void main(String[] args) {
        Dog dog = new Dog("A");
        System.out.println(dog.getObjectAddress()); // Dog@4554617c
        func(dog);
        System.out.println(dog.getObjectAddress()); // Dog@4554617c
        System.out.println(dog.getName());          // A
    }

    private static void func(Dog dog) {
        System.out.println(dog.getObjectAddress()); // Dog@4554617c
        dog = new Dog("B");
        System.out.println(dog.getObjectAddress()); // Dog@74a14482
        System.out.println(dog.getName());          // B
    }
}

StackOverflow: Is Java “pass-by-reference” or “pass-by-value”?

float 与 double

Java 不能隐式执行向下转型,因为这会使得精度降低。

1.1 字面量属于 double 类型,不能直接将 1.1 直接赋值给 float 变量,因为这是向下转型。

// float f = 1.1;

1.1f 字面量才是 float 类型。

float f = 1.1f;

隐式类型转换

因为字面量 1 是 int 类型,它比 short 类型精度要高,因此不能隐式地将 int 类型向下转型为 short 类型。

short s1 = 1;
// s1 = s1 + 1;

但是使用 += 或者 ++ 运算符会执行隐式类型转换。

s1 += 1;
s1++;

上面的语句相当于将 s1 + 1 的计算结果进行了向下转型:

s1 = (short) (s1 + 1);

StackOverflow : Why don't Java's +=, -=, *=, /= compound assignment operators require casting?

switch

从 Java 7 开始,可以在 switch 条件判断语句中使用 String 对象。

String s = "a";
switch (s) {
    case "a":
        System.out.println("aaa");
        break;
    case "b":
        System.out.println("bbb");
        break;
}

switch 不支持 long,是因为 switch 的设计初衷是对那些只有少数几个值的类型进行等值判断,如果值过于复杂,那么还是用 if 比较合适。

// long x = 111;
// switch (x) { // Incompatible types. Found: 'long', required: 'char, byte, short, int, Character, Byte, Short, Integer, String, or an enum'
//     case 111:
//         System.out.println(111);
//         break;
//     case 222:
//         System.out.println(222);
//         break;
// }

StackOverflow : Why can't your switch statement data type be long, Java?

四、关键字

final

1. 数据

声明数据为常量,可以是编译时常量,也可以是在运行时被初始化后不能被改变的常量。

  • 对于基本类型,final 使数值不变;

  • 对于引用类型,final 使引用不变,也就不能引用其它对象,但是被引用的对象本身是可以修改的。

final int x = 1;
// x = 2;  // cannot assign value to final variable 'x'
final A y = new A();
y.a = 1;

2. 方法

当 final 声明方法时,该方法不能被子类重写。

private 方法会隐式地被指定为 final,如果在子类中定义的方法和父类中的一个 private 方法签名相同,此时子类的方法不是重写基类方法,而是在子类中定义了一个新的方法。

方法签名包括:方法名和参数。

3. 类

当 final 声明类时,该类不允许被继承。

static

1. 静态变量(类变量)

  • 静态变量:又称为类变量,也就是说这个变量属于类的,类所有的实例都共享静态变量,可以直接通过类名来访问它。静态变量在内存中只存在一份。

  • 实例变量:每创建一个实例就会产生一个实例变量,它与该实例同生共死。

public class A {

    private int x;         // 实例变量
    private static int y;  // 静态变量

    public static void main(String[] args) {
        // int x = A.x;  // Non-static field 'x' cannot be referenced from a static context
        A a = new A();
        int x = a.x;
        int y = A.y; // 直接通过类名访问静态变量
    }
}

2. 静态方法(类方法)

静态方法在类加载的时候就存在了,它不依赖于任何实例。所以静态方法必须有实现,也就是说它不能是抽象方法。

public abstract class A {
    public static void func1(){
    }
    // public abstract static void func2();  // Illegal combination of modifiers: 'abstract' and 'static'
}

只能访问所属类的静态字段和静态方法,方法中不能有 this 和 super 关键字,因此这两个关键字与具体对象关联。

public class A {

    private static int x;
    private int y;

    public static void func1(){
        int a = x;
        // int b = y;  // Non-static field 'y' cannot be referenced from a static context
        // int b = this.y;     // 'A.this' cannot be referenced from a static context
    }
}

3. 静态语句块

静态语句块在类初始化时运行一次。

public class A {
    static {
        System.out.println("123");
    }

    public static void main(String[] args) {
        A a1 = new A();
        A a2 = new A();
    }
}
123

4. 静态内部类

非静态内部类依赖于外部类的实例,也就是说需要先创建外部类实例,才能用这个实例去创建非静态内部类。

这就是为什么说:非静态内部类会持有外部类的引用,很容易造成内存泄漏。

而静态内部类不需要,直接创建静态内部类的实例即可。

public class OuterClass {

    class InnerClass {
    }

    static class StaticInnerClass {
    }

    public static void main(String[] args) {
        // InnerClass innerClass = new InnerClass(); // 'OuterClass.this' cannot be referenced from a static context
        OuterClass outerClass = new OuterClass();
        InnerClass innerClass = outerClass.new InnerClass();
        StaticInnerClass staticInnerClass = new StaticInnerClass();
    }
}

但是静态内部类不能访问外部类中非静态的变量和方法。

5. 静态导包

在使用静态变量和方法时不用再指明 ClassName,从而简化代码,但可读性大大降低。

一般不建议

import static com.xxx.ClassName.*

6. 初始化顺序

静态变量和静态语句块优先于实例变量和普通语句块,静态变量和静态语句块的初始化顺序取决于它们在代码中的顺序。

public static String staticField = "静态变量";
static {
    System.out.println("静态语句块");
}
public String field = "实例变量";
{
    System.out.println("普通语句块");
}

最后才是构造函数的初始化。

public InitialOrderTest() {
    System.out.println("构造函数");
}

存在继承的情况下,初始化顺序为:

  • 父类(静态变量、静态语句块)

  • 子类(静态变量、静态语句块)

  • 父类(实例变量、普通语句块)

  • 父类(构造函数)

  • 子类(实例变量、普通语句块)

  • 子类(构造函数)

初始化的顺序

  • 类中静态的成员只会在类第一次加载的时候初始化一次,而非静态成员和构造器执行的次数在于实例化对象的个数,实例化多少个对象就执行多少次。

  • 各个成员执行的顺序:由静态到非静态,由父类到子类,静态之间按代码书写顺序,非静态之间按代码书写顺序,构造器排在非静态之后

Java 的变量类型:

  • 静态变量(类变量)

  • 实例变量

  • 局部变量

五、Object 通用方法

腾讯问到了这个。

概览

public native int hashCode()

public boolean equals(Object obj)

protected native Object clone() throws CloneNotSupportedException

public String toString()

public final native Class<?> getClass()

protected void finalize() throws Throwable {}

public final native void notify()

public final native void notifyAll()

public final native void wait(long timeout) throws InterruptedException

public final void wait(long timeout, int nanos) throws InterruptedException

public final void wait() throws InterruptedException

equals()

1. 等价关系

两个对象具有等价关系,需要满足以下五个条件:

1⃣️ 自反性

x.equals(x); // true

2⃣️ 对称性

x.equals(y) == y.equals(x); // true

3⃣️ 传递性

if (x.equals(y) && y.equals(z))
    x.equals(z); // true;

4⃣️ 一致性

多次调用 equals() 方法结果不变

x.equals(y) == x.equals(y); // true

5⃣️ 与 null 的比较

对任何不是 null 的对象 x 调用 x.equals(null) 结果都为 false

x.equals(null); // false;

2. 等价与相等

  • 对于基本类型,== 判断两个值是否相等,基本类型没有 equals() 方法。

  • 对于引用类型,== 判断两个变量是否引用同一个对象,而 equals() 判断引用的对象是否等价。

Integer x = new Integer(1);
Integer y = new Integer(1);
System.out.println(x.equals(y)); // true
System.out.println(x == y);      // false

3. 实现

  • 检查是否为同一个对象的引用,如果是直接返回 true;

  • 检查是否是同一个类型,如果不是,直接返回 false;

  • 将 Object 对象进行转型;

  • 判断每个关键域是否相等。

public class EqualExample {

    private int x;
    private int y;
    private int z;

    public EqualExample(int x, int y, int z) {
        this.x = x;
        this.y = y;
        this.z = z;
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;

        EqualExample that = (EqualExample) o;

        if (x != that.x) return false;
        if (y != that.y) return false;
        return z == that.z;
    }
}

hashCode()

哈希值,也叫散列值。

hashCode() 返回哈希值,而 equals() 是用来判断两个对象是否等价。

等价的两个对象哈希值一定相同,但是哈希值相同的两个对象不一定等价,这是因为计算哈希值具有随机性,两个值不同的对象可能计算出相同的哈希值。

在覆盖 equals() 方法时应当总是覆盖 hashCode() 方法,保证等价的两个对象哈希值也相等。

HashSet 和 HashMap 等集合类使用了 hashCode() 方法来计算对象应该存储的位置,因此要将对象添加到这些集合类中,需要让对应的类实现 hashCode() 方法。

下面的代码中,新建了两个等价的对象,并将它们添加到 HashSet 中。我们希望将这两个对象当成一样的,只在集合中添加一个对象。但是 EqualExample 没有实现 hashCode() 方法,因此这两个对象的哈希值是不同的,最终导致集合添加了两个等价的对象。

EqualExample e1 = new EqualExample(1, 1, 1);
EqualExample e2 = new EqualExample(1, 1, 1);
System.out.println(e1.equals(e2)); // true
HashSet<EqualExample> set = new HashSet<>();
set.add(e1);
set.add(e2);
System.out.println(set.size());   // 2

理想的哈希函数应当具有均匀性,即不相等的对象应当均匀分布到所有可能的哈希值上。这就要求了哈希函数要把所有域的值都考虑进来。可以将每个域都当成 R 进制的某一位,然后组成一个 R 进制的整数。

R 一般取 31,因为它是一个奇素数,如果是偶数的话,当出现乘法溢出,信息就会丢失,因为与 2 相乘相当于向左移一位,最左边的位丢失。并且一个数与 31 相乘可以转换成移位和减法:31*x == (x<<5)-x,编译器会自动进行这个优化。

@Override
public int hashCode() {
    int result = 17;
    result = 31 * result + x;
    result = 31 * result + y;
    result = 31 * result + z;
    return result;
}

toString()

默认返回 ToStringExample@4554617c 这种形式,其中 @ 后面的数值为散列码的无符号十六进制表示。

public class ToStringExample {

    private int number;

    public ToStringExample(int number) {
        this.number = number;
    }
}
ToStringExample example = new ToStringExample(123);
System.out.println(example.toString());
ToStringExample@4554617c

clone()

1. cloneable

clone() 是 Object 的 protected 方法,它不是 public,一个类不显式去重写 clone(),其它类就不能直接去调用该类实例的 clone() 方法。

public class CloneExample {
    private int a;
    private int b;
}
CloneExample e1 = new CloneExample();
// CloneExample e2 = e1.clone(); // 'clone()' has protected access in 'java.lang.Object'

重写 clone() 得到以下实现:

public class CloneExample {
    private int a;
    private int b;

    @Override
    public CloneExample clone() throws CloneNotSupportedException {
        return (CloneExample)super.clone();
    }
}
CloneExample e1 = new CloneExample();
try {
    CloneExample e2 = e1.clone();
} catch (CloneNotSupportedException e) {
    e.printStackTrace();
}
java.lang.CloneNotSupportedException: CloneExample

以上抛出了 CloneNotSupportedException,这是因为 CloneExample 没有实现 Cloneable 接口。

应该注意的是,clone() 方法并不是 Cloneable 接口的方法,而是 Object 的一个 protected 方法。

Cloneable 接口只是规定,如果一个类没有实现 Cloneable 接口又调用了 clone() 方法,就会抛出 CloneNotSupportedException。

public class CloneExample implements Cloneable {
    private int a;
    private int b;

    @Override
    public Object clone() throws CloneNotSupportedException {
        return super.clone();
    }
}

2. 浅拷贝

拷贝对象和原始对象的引用类型引用同一个对象。

public class ShallowCloneExample implements Cloneable {

    private int[] arr;

    public ShallowCloneExample() {
        arr = new int[10];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = i;
        }
    }

    public void set(int index, int value) {
        arr[index] = value;
    }

    public int get(int index) {
        return arr[index];
    }

    @Override
    protected ShallowCloneExample clone() throws CloneNotSupportedException {
        // 拷贝引用同一个对象
        return (ShallowCloneExample) super.clone();
    }
}
// 原始对象
ShallowCloneExample e1 = new ShallowCloneExample();
// 拷贝对象
ShallowCloneExample e2 = null;
try {
    e2 = e1.clone();
} catch (CloneNotSupportedException e) {
    e.printStackTrace();
}
e1.set(2, 222);
System.out.println(e2.get(2)); // 222

3. 深拷贝

拷贝对象和原始对象的引用类型引用不同对象。

public class DeepCloneExample implements Cloneable {

    private int[] arr;

    public DeepCloneExample() {
        arr = new int[10];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = i;
        }
    }

    public void set(int index, int value) {
        arr[index] = value;
    }

    public int get(int index) {
        return arr[index];
    }

    @Override
    protected DeepCloneExample clone() throws CloneNotSupportedException {
        // 拷贝引用不同对象
        DeepCloneExample result = (DeepCloneExample) super.clone();
        result.arr = new int[arr.length];
        for (int i = 0; i < arr.length; i++) {
            result.arr[i] = arr[i];
        }
        return result;
    }
}
DeepCloneExample e1 = new DeepCloneExample();
DeepCloneExample e2 = null;
try {
    e2 = e1.clone();
} catch (CloneNotSupportedException e) {
    e.printStackTrace();
}
e1.set(2, 222);
System.out.println(e2.get(2)); // 2

4. clone() 的替代方案

使用 clone() 方法来拷贝一个对象即复杂又有风险,它会抛出异常,并且还需要类型转换。《Effective Java》书上讲到,最好不要去使用 clone(),可以使用拷贝构造函数或者拷贝工厂来拷贝一个对象。

public class CloneConstructorExample {

    private int[] arr;

    public CloneConstructorExample() {
        arr = new int[10];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = i;
        }
    }

    public CloneConstructorExample(CloneConstructorExample original) {
        arr = new int[original.arr.length];
        for (int i = 0; i < original.arr.length; i++) {
            arr[i] = original.arr[i];
        }
    }

    public void set(int index, int value) {
        arr[index] = value;
    }

    public int get(int index) {
        return arr[index];
    }
}
CloneConstructorExample e1 = new CloneConstructorExample();
CloneConstructorExample e2 = new CloneConstructorExample(e1);
e1.set(2, 222);
System.out.println(e2.get(2)); // 2

六、继承

访问权限

private、protected、public和default的区别

public: 具有最大的访问权限,可以访问任何一个在classpath下的类、接口、异常等。它往往用于对外的情况,也就是对象或类对外的一种接口的形式。

protected: 主要的作用就是用来保护子类的。它的含义在于子类可以用它修饰的成员,其他的不可以,它相当于传递给子类的一种继承的东西

default: 有时候也称为friendly,它是针对本包访问而设计的,任何处于本包下的类、接口、异常等,都可以相互访问,即使是父类没有用protected修饰的成员也可以。

private: 访问权限仅限于类的内部,是一种封装的体现,例如,大多数成员变量都是修饰符为private的,它们不希望被其他任何外部的类访问。

Java 中有三个访问权限修饰符:private、protected 以及 public,如果不加访问修饰符,表示包级可见。

可以对类或类中的成员(字段和方法)加上访问修饰符。

  • 类可见表示其它类可以用这个类创建实例对象。

  • 成员可见表示其它类可以用这个类的实例对象访问到该成员;

protected 用于修饰成员,表示在继承体系中成员对于子类可见,但是这个访问修饰符对于类没有意义。

设计良好的模块会隐藏所有的实现细节,把它的 API (接口)与它的实现清晰地隔离开来。模块之间只通过它们的 API (接口)进行通信,一个模块不需要知道其他模块的内部工作情况,这个概念被称为信息隐藏或封装。因此访问权限应当尽可能地使每个类或者成员不被外界访问。

如果子类的方法重写了父类的方法,那么子类中该方法的访问级别不允许低于父类的访问级别。这是为了确保可以使用父类实例的地方都可以使用子类实例去代替,也就是确保满足里氏替换原则

字段决不能是公有的,因为这么做的话就失去了对这个字段修改行为的控制,客户端可以对其随意修改。例如下面的例子中,AccessExample 拥有 id 公有字段,如果在某个时刻,我们想要使用 int 存储 id 字段,那么就需要修改所有的客户端代码。

public class AccessExample {
    public String id;
}

可以使用公有的 getter 和 setter 方法来替换公有字段,这样的话就可以控制对字段的修改行为。

public class AccessExample {

    private int id;

    public String getId() {
        return id + "";
    }

    public void setId(String id) {
        this.id = Integer.valueOf(id);
    }
}

但是也有例外,如果是包级私有的类或者私有的嵌套类,那么直接暴露成员不会有特别大的影响。

public class AccessWithInnerClassExample {

    private class InnerClass {
        int x;
    }

    private InnerClass innerClass;

    public AccessWithInnerClassExample() {
        innerClass = new InnerClass();
    }

    public int getValue() {
        return innerClass.x;  // 直接访问
    }
}

抽象类(abstract)与接口(interface)

1. 抽象类 abstract

抽象类和抽象方法都使用 abstract 关键字进行声明。如果一个类中包含抽象方法,那么这个类必须声明为抽象类。

抽象类和普通类最大的区别是,抽象类不能被实例化,只能被继承。

public abstract class AbstractClassExample {

    protected int x;
    private int y;

    public abstract void func1();

    public void func2() {
        System.out.println("func2");
    }
}
public class AbstractExtendClassExample extends AbstractClassExample {
    @Override
    public void func1() {
        System.out.println("func1");
    }
}
// AbstractClassExample ac1 = new AbstractClassExample(); // 'AbstractClassExample' is abstract; cannot be instantiated
AbstractClassExample ac2 = new AbstractExtendClassExample();
ac2.func1();

2. 接口 interface

接口是抽象类的延伸,在 Java 8 之前,它可以看成是一个完全抽象的类,也就是说它不能有任何的方法实现。

从 Java 8 开始,接口也可以拥有默认的方法实现,这是因为不支持默认方法的接口的维护成本太高了。在 Java 8 之前,如果一个接口想要添加新的方法,那么要修改所有实现了该接口的类,让它们都实现新增的方法。

接口的成员(字段 + 方法)默认都是 public 的,并且不允许定义为 private 或者 protected。

接口的字段默认都是 static 和 final 的。

public interface InterfaceExample {

    void func1();

    default void func2(){
        System.out.println("func2");
    }

    int x = 123; // 接口的字段默认为 final 的,而 final 变量定义时必须初始化
    // int y;               // Variable 'y' might not have been initialized
    public int z = 0;       // Modifier 'public' is redundant for interface fields
    // private int k = 0;   // Modifier 'private' not allowed here
    // protected int l = 0; // Modifier 'protected' not allowed here
    // private void fun3(); // Modifier 'private' not allowed here
}
public class InterfaceImplementExample implements InterfaceExample {
    @Override
    public void func1() {
        System.out.println("func1");
    }
}
// InterfaceExample ie1 = new InterfaceExample(); // 'InterfaceExample' is abstract; cannot be instantiated
InterfaceExample ie2 = new InterfaceImplementExample();
ie2.func1();
System.out.println(InterfaceExample.x);

3. 比较

  • 从设计层面上看,抽象类提供了一种 IS-A 关系,需要满足里式替换原则,即子类对象必须能够替换掉所有父类对象。而接口更像是一种 LIKE-A 关系,它只是提供一种方法实现契约,并不要求接口和实现接口的类具有 IS-A 关系。

  • 从使用上来看,一个类可以实现多个接口,但是不能继承多个抽象类。

  • 接口的字段默认是 static 和 final 类型的,而抽象类的字段没有这种限制。

  • 接口的成员默认是 public 的,而抽象类的成员可以有多种访问权限。

4. 使用选择

使用接口:

  • 需要让不相关的类都实现一个方法,例如不相关的类都可以实现 Comparable 接口中的 compareTo() 方法;

  • 需要使用多重继承。

使用抽象类:

  • 需要在几个相关的类中共享代码。

  • 需要能控制继承来的成员的访问权限,而不是都为 public。

  • 需要继承非静态和非常量字段。

在很多情况下,接口优先于抽象类。因为接口没有抽象类严格的类层次结构要求,可以灵活地为一个类添加行为。并且从 Java 8 开始,接口也可以有默认的方法实现,使得修改接口的成本也变的很低。

super

  • 访问父类的构造函数:可以使用 super() 函数访问父类的构造函数,从而委托父类完成一些初始化的工作。应该注意到,子类一定会调用父类的构造函数来完成初始化工作,一般是调用父类的默认构造函数,如果子类需要调用父类其它构造函数,那么就可以使用 super() 函数。

  • 访问父类的成员:如果子类重写了父类的某个方法,可以通过使用 super 关键字来引用父类的方法实现。

public class SuperExample {

    protected int x;
    protected int y;

    public SuperExample(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public void func() {
        System.out.println("SuperExample.func()");
    }
}
public class SuperExtendExample extends SuperExample {

    private int z;

    public SuperExtendExample(int x, int y, int z) {
        super(x, y);
        this.z = z;
    }

    @Override
    public void func() {
        super.func();
        System.out.println("SuperExtendExample.func()");
    }
}
SuperExample e = new SuperExtendExample(1, 2, 3);
e.func();
输出:
>> SuperExample.func()
>> SuperExtendExample.func()

Using the Keyword super

重写与重载

1. 重写(Override)

存在于继承体系中,指子类实现了一个与父类在方法声明上完全相同的一个方法。

为了满足里式替换原则,重写有以下三个限制:

  • 子类方法的访问权限必须大于等于父类方法;

  • 子类方法的返回类型必须是父类方法返回类型或为其子类型。

  • 子类方法抛出的异常类型必须是父类抛出异常类型或为其子类型。

使用 @Override 注解,可以让编译器帮忙检查是否满足上面的三个限制条件。

下面的示例中,SubClass 为 SuperClass 的子类,SubClass 重写了 SuperClass 的 func() 方法。其中:

  • 子类方法访问权限为 public,大于父类的 protected。

  • 子类的返回类型为 ArrayList,是父类返回类型 List 的子类。

  • 子类抛出的异常类型为 Exception,是父类抛出异常 Throwable 的子类。

  • 子类重写方法使用 @Override 注解,从而让编译器自动检查是否满足限制条件。

class SuperClass {
    protected List<Integer> func() throws Throwable {
        return new ArrayList<>();
    }
}

class SubClass extends SuperClass {
    @Override
    public ArrayList<Integer> func() throws Exception {
        return new ArrayList<>();
    }
}

在调用一个方法时,先从本类中查找看是否有对应的方法,如果没有再到父类中查看,看是否从父类继承来。否则就要对参数进行转型,转成父类之后看是否有对应的方法。总的来说,方法调用的优先级为:

  • this.func(this)

  • super.func(this)

  • this.func(super)

  • super.func(super)

/*
    A
    |
    B
    |
    C
    |
    D
 */


class A {

    public void show(A obj) {
        System.out.println("A.show(A)");
    }

    public void show(C obj) {
        System.out.println("A.show(C)");
    }
}

class B extends A {

    @Override
    public void show(A obj) {
        System.out.println("B.show(A)");
    }
}

class C extends B {
}

class D extends C {
}
public static void main(String[] args) {

    A a = new A();
    B b = new B();
    C c = new C();
    D d = new D();

    // 在 A 中存在 show(A obj),直接调用
    a.show(a); // A.show(A)
    // 在 A 中不存在 show(B obj),将 B 转型成其父类 A
    a.show(b); // A.show(A)
    // 在 B 中存在从 A 继承来的 show(C obj),直接调用
    b.show(c); // A.show(C)
    // 在 B 中不存在 show(D obj),但是存在从 A 继承来的 show(C obj),将 D 转型成其父类 C
    b.show(d); // A.show(C)

    // 引用的还是 B 对象,所以 ba 和 b 的调用结果一样
    A ba = new B();
    ba.show(c); // A.show(C)
    ba.show(d); // A.show(C)
}

2. 重载(Overload)

方法名相同,方法的参数不同。

存在于同一个类中,指一个方法与已经存在的方法名称上相同,但是参数类型、个数、顺序至少有一个不同。

应该注意的是,返回值不同,其它都相同不算是重载。

七、反射

Java反射机制是在运行状态中,对于任意一个类,都能够知道这个类中的所有属性和方法,对于任意一个对象,都能够调用它的任意一个方法和属性,这种动态获取程序信息以及动态调用对象的方法的功能称为Java语言的反射机制。反射被视为动态语言的关键。

每个类都有一个 Class 对象,包含了与类有关的信息。当编译一个新类时,会产生一个同名的 .class 文件,该文件内容保存着 Class 对象。

类加载相当于 Class 对象的加载,类在第一次使用时才动态加载到 JVM 中。也可以使用 Class.forName("com.mysql.jdbc.Driver") 这种方式来控制类的加载,该方法会返回一个 Class 对象。

反射可以提供运行时的类信息,并且这个类可以在运行时才加载进来,甚至在编译时期该类的 .class 不存在也可以加载进来。

Class 和 java.lang.reflect 一起对反射提供了支持,java.lang.reflect 类库主要包含了以下三个类:

  • Field :可以使用 get() 和 set() 方法读取和修改 Field 对象关联的字段。

  • Method :可以使用 invoke() 方法调用与 Method 对象关联的方法。

  • Constructor :可以用 Constructor 的 newInstance() 创建新的对象。

反射的功能:

  • 在运行时判断任意一个对象所属的类。

  • 在运行时构造任意一个类的对象。

  • 在运行时判断任意一个类所具有的成员变量和方法。

  • 在运行时调用任意一个对象的方法。

  • 生成动态代理。

反射的应用场景:

  • 逆向代码 ,例如反编译。

  • 与注解相结合的框架,例如Retrofit。

  • 单纯的反射机制应用框架,例如EventBus。

  • 动态生成类框架,例如Gson。

反射的优点:

  • 可扩展性:应用程序可以利用全限定名创建可扩展对象的实例,来使用来自外部的用户自定义类。

  • 类浏览器和可视化开发环境:一个类浏览器需要可以枚举类的成员。可视化开发环境(如 IDE)可以从利用反射中可用的类型信息中受益,以帮助程序员编写正确的代码。

  • 调试器和测试工具:调试器需要能够检查一个类里的私有成员。测试工具可以利用反射来自动地调用类里定义的可被发现的 API 定义,以确保一组测试中有较高的代码覆盖率。

反射的缺点:

尽管反射非常强大,但也不能滥用。如果一个功能可以不用反射完成,那么最好就不用。在我们使用反射技术时,下面几条内容应该牢记于心。

  • 性能开销 :反射涉及了动态类型的解析,所以 JVM 无法对这些代码进行优化。因此,反射操作的效率要比那些非反射操作低得多。我们应该避免在经常被执行的代码或对性能要求很高的程序中使用反射。

  • 安全限制 :使用反射技术要求程序必须在一个没有安全限制的环境中运行。如果一个程序必须在有安全限制的环境中运行,如 Applet,那么这就是个问题了。

  • 内部暴露 :由于反射允许代码执行一些在正常情况下不被允许的操作(比如访问私有的属性和方法),所以使用反射可能会导致意料之外的副作用,这可能导致代码功能失调并破坏可移植性。反射代码破坏了抽象性,因此当平台发生改变的时候,代码的行为就有可能也随着变化。

八、异常

Throwable 可以用来表示任何可以作为异常抛出的类,分为两种: ErrorException。其中 Error 用来表示 JVM 无法处理的错误,Exception 分为两种:

  • 受检异常 :需要用 try...catch... 语句捕获并进行处理,并且可以从异常中恢复;

  • 非受检异常 :是程序运行时错误,例如除 0 会引发 Arithmetic Exception,此时程序崩溃并且无法恢复。

九、泛型

腾讯问了类型擦除。

泛型的本质是为了参数化类型。

Java 在编译期间,所有的泛型信息都会被擦掉,这也就是通常所说的类型擦除。

public class Box<T> {
    // T stands for "Type"
    private T t;
    public void set(T t) { this.t = t; }
    public T get() { return t; }
}

泛型的目的:

  • 通过泛型使得在编译阶段完成一些类型转换的工作,避免在运行时强制类型转换而出现 ClassCastException,即类型转换异常。

泛型的好处:

  • 类型安全。

    • 类型错误在编译期间就被捕获到了,而不是在运行时当作java.lang.ClassCastException展示出来,将类型检查从运行时挪到编译时有助于开发者更容易找到错误,并提高程序的可靠性。

  • 消除了代码中许多的强制类型转换,增强了代码的可读性。

  • 为较大的优化带来了可能。

类型擦除:

下面的代码会输出true,这是因为不管给泛型的类型形参传入哪一种类型实参,对于Java来说,它们依然被 当成同一类进行处理,在内存中也只占用一块内存空间。

从Java泛型这一概念提出的目的来看,其只是作用于代码编译阶段,在编译过程中,正确检验泛型结果后, 就会将泛型的相关信息擦除,也就是说,成功编译过后的class文件中是不包含任何泛型信息的。泛型信息不会进入到运行时阶段。

Class c1 = new ArrayList<Integer>().getClass();
Class c2 = new ArrayList<String>().getClass();
System.out.println(c1==c2);
// 输出:true

参考

十、注解

看 andriod-interview-pdf

Java 注解是附加在代码中的一些元信息,用于一些工具在编译、运行时进行解析和使用,起到说明、配置的功能。注解不会也不能影响代码的实际逻辑,仅仅起到辅助性的作用。

注解 Annotation 实现原理与自定义注解例子

十一、特性

Java 各版本的新特性

New highlights in Java SE 8

  1. Lambda Expressions

  2. Pipelines and Streams

  3. Date and Time API

  4. Default Methods

  5. Type Annotations

  6. Nashhorn JavaScript Engine

  7. Concurrent Accumulators

  8. Parallel operations

  9. PermGen Error Removed

New highlights in Java SE 7

  1. Strings in Switch Statement

  2. Type Inference for Generic Instance Creation

  3. Multiple Exception Handling

  4. Support for Dynamic Languages

  5. Try with Resources

  6. Java nio Package

  7. Binary Literals, Underscore in literals

  8. Diamond Syntax

Java 与 C++ 的区别

  • Java 是纯粹的面向对象语言,所有的对象都继承自 java.lang.Object,C++ 为了兼容 C 即支持面向对象也支持面向过程。

  • Java 通过虚拟机从而实现跨平台特性,但是 C++ 依赖于特定的平台。

  • Java 没有指针,它的引用可以理解为安全指针,而 C++ 具有和 C 一样的指针。

  • Java 支持自动垃圾回收,而 C++ 需要手动回收。

  • Java 不支持多重继承,只能通过实现多个接口来达到相同目的,而 C++ 支持多重继承。

  • Java 不支持操作符重载,虽然可以对两个 String 对象执行加法运算,但是这是语言内置支持的操作,不属于操作符重载,而 C++ 可以。

  • Java 的 goto 是保留字,但是不可用,C++ 可以使用 goto。

What are the main differences between Java and C++?

JRE or JDK

  • JRE:Java Runtime Environment,Java 运行环境的简称,为 Java 的运行提供了所需的环境。它是一个 JVM 程序,主要包括了 JVM 的标准实现和一些 Java 基本类库。

  • JDK:Java Development Kit,Java 开发工具包,提供了 Java 的开发及运行环境。JDK 是 Java 开发的核心,集成了 JRE 以及一些其它的工具,比如编译 Java 源码的编译器 javac 等。

十二、枚举

十三、面向对象与面向过程

面向过程

面向过程性能比面向对象高。 因为类调用时需要实例化,开销比较大,比较消耗资源,所以当性能是最重要的考量因素的时候,比如单片机、嵌入式开发、Linux/Unix 等一般采用面向过程开发。但是,面向过程没有面向对象易维护、易复用、易扩展。

面向对象

面向对象易维护、易复用、易扩展。 因为面向对象有封装、继承、多态性的特性,所以可以设计出低耦合的系统,使系统更加灵活、更加易于维护。但是,面向对象性能比面向过程低。

十四、面向对象的三大特性

封装、继承、多态。

封装

利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体。

数据被保护在抽象数据类型的内部,尽可能地隐藏内部的细节,只保留一些对外的接口使其与外部发生联系。

用户无需关心对象内部的细节,但可以通过对象对外提供的接口来访问该对象。

优点:

  • 减少耦合:可以独立地开发、测试、优化、使用、理解和修改

  • 减轻维护的负担:可以更容易被理解,并且在调试的时候可以不影响其他模块

  • 有效地调节性能:可以通过剖析来确定哪些模块影响了系统的性能

  • 提高软件的可重用性

  • 降低了构建大型系统的风险:即使整个系统不可用,但是这些独立的模块却有可能是可用的

以下 Person 类封装 name、gender、age 等属性,外界只能通过 get() 方法获取一个 Person 对象的 name 属性和 gender 属性,而无法获取 age 属性,但是 age 属性可以供 work() 方法使用。

注意到 gender 属性使用 int 数据类型进行存储,封装使得用户注意不到这种实现细节。并且在需要修改 gender 属性使用的数据类型时,也可以在不影响客户端代码的情况下进行。

public class Person {

    private String name;
    private int gender;
    private int age;

    public String getName() {
        return name;
    }

    public String getGender() {
        return gender == 0 ? "man" : "woman";
    }

    public void work() {
        if (18 <= age && age <= 50) {
            System.out.println(name + " is working very hard!");
        } else {
            System.out.println(name + " can't work any more!");
        }
    }
}

继承

继承实现了 IS-A 关系,例如 Cat 和 Animal 就是一种 IS-A 关系,因此 Cat 可以继承自 Animal,从而获得 Animal 非 private 的属性和方法。

继承应该遵循里氏替换原则,子类对象必须能够替换掉所有父类对象。

Cat 可以当做 Animal 来使用,也就是说可以使用 Animal 引用 Cat 对象。父类引用指向子类对象称为 向上转型

Animal animal = new Cat();

多态

多态分为编译时多态和运行时多态:

  • 编译时多态主要指方法的重载(方法名相同,方法的参数不同)

  • 运行时多态指程序中定义的对象引用所指向的具体类型在运行期间才确定

运行时多态有三个条件:

  • 继承

  • 覆盖(重写)

  • 向上转型

下面的代码中,乐器类(Instrument)有两个子类:Wind 和 Percussion,它们都覆盖了父类的 play() 方法,并且在 main() 方法中使用父类 Instrument 来引用 Wind 和 Percussion 对象。在 Instrument 引用调用 play() 方法时,会执行实际引用对象所在类的 play() 方法,而不是 Instrument 类的方法。

public class Instrument {

    public void play() {
        System.out.println("Instument is playing...");
    }
}
public class Wind extends Instrument {

    public void play() {
        System.out.println("Wind is playing...");
    }
}
public class Percussion extends Instrument {

    public void play() {
        System.out.println("Percussion is playing...");
    }
}
public class Music {

    public static void main(String[] args) {
        List<Instrument> instruments = new ArrayList<>();
        instruments.add(new Wind());
        instruments.add(new Percussion());
        for(Instrument instrument : instruments) {
            instrument.play();
        }
    }
}
Wind is playing...
Percussion is playing...

十五、面向对象的七大原则

同样也是设计「设计模式」需要遵循的基本原则。

1. 单一职责原则 Single Responsibility Principle, SRP

一个对象应该只包含单一的职责,并且该职责被完整地封装在一个类中。

就一个类而言,应该仅有一个引起它变化的原因。

类的职责主要包括两个方面:数据职责和行为职责,数据职责通过其属性来体现,而行为职责通过其方法来体现。

2. 开闭原则 Open-Closed Principle, OCP

阿里面试问到了。

一个软件实体应当对扩展开放,对修改关闭。也就是说在设计一个模块的时候,应当使这个模块可以在不被修改的前提下被扩展,即实现在不修改源代码的情况下改变这个模块的行为。

3. 里氏代换原则 Liskov Substitution Principle, LSP

在软件中如果能够使用父类对象,那么一定能够使用其子类对象。

里氏代换原则是实现开闭原则的重要方式之一,由于使用父类对象的地方都可以使用子类对象,因此在程序中尽量使用父类类型来对对象进行定义,而在运行时再确定其子类类型,用子类对象来替换父类对象。

比如 Animal animal = new Cat();

4. 依赖倒转原则 Dependence Inversion Principle, DIP

要针对接口编程,不要针对实现编程。

简单来说,依赖倒转原则就是指:代码要依赖于抽象的类,而不要依赖于具体的类;要针对接口或抽象类编程,而不是针对具体类编程。

如果说开闭原则是面向对象设计的目标的话,那么依赖倒转原则就是面向对象设计的主要手段。

5. 接口隔离原则 Interface Segregation Principle, ISP

接口隔离原则是指使用多个专门的接口,而不使用单一的总接口。每一个接口应该承担一种相对独立的角色,不多不少,不干不该干的事,该干的事都要干。

应当为客户端提供尽可能小的单独的接口,而不要提供大的总接口。

要定义「瘦接口」,不要定义「胖接口」。

6. 合成复用原则 Composite Reuse Principle, CRP

又称为组合/聚合复用原则(Composition/ Aggregate Reuse Principle, CARP)。

尽量使用对象组合,而不是继承来达到复用的目的。

简言之:要尽量使用组合/聚合关系,少用继承。

7. 迪米特法则 Law of Demeter, LoD

又称为最少知识原则(Least Knowledge Principle, LKP)。

  1. 不要和“陌生人”说话。英文定义为:Don’t talk to strangers.

  2. 只与你的直接朋友通信。英文定义为:Talk only to your immediate friends.

  3. 每一个软件单位对其他的单位都只有最少的知识,而且局限于那些与本单位密切相关的软件单位。英文定义为:Each unit should have only limited knowledge about other units: only units “closely” related to the current unit.

在迪米特法则中,对于一个对象,其朋友包括以下几类

  1. 当前对象本身(this)

  2. 以参数形式传入到当前对象方法中的对象

  3. 当前对象的成员对象

  4. 如果当前对象的成员对象是一个集合,那么集合中的元素也都是朋友

  5. 当前对象所创建的对象

任何一个对象,如果满足上面的条件之一,就是当前对象的“朋友”,否则就是“陌生人”。

十六、变量类型

已知变量:

  • 实例变量

  • 静态变量(也叫类变量)

  • 成员变量:实例变量和静态变量都称为成员变量

  • 局部变量

  • 全局变量 Java中是不存在全局变量的!

Java 支持的变量类型有:

  • 类变量(静态变量):独立于方法之外的变量,用 static 修饰。

    • 类变量也称为静态变量,在类中以 static 关键字声明,但必须在方法之外。

  • 实例变量:独立于方法之外的变量,不过没有 static 修饰。

    • 实例变量声明在一个类中,但在方法、构造方法和语句块之外。

  • 局部变量:类的方法中的变量。

    • 局部变量声明在方法、构造方法或者语句块中

最后更新于